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A deterministic model with material strain-softening has been employed to predict the failure process of
quasi-brittle materials subjected to different strain gradients. The failures of beams in pure bending and
L-shape specimens in tension are simulated using this model, and the influence of material damage rate
on the failure process is studied. The effect of statistical variations in the material properties on the frac-
ture statistics of the components is then considered. The model correctly predicts the changes in the mag-
nitude and distribution of the failure loads of specimens with different strain gradients. The results can
help explain the influence of strain gradient on the fracture statistics of quasi-brittle materials.
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1. Introduction

Predicting the failure of components made of brittle or quasi-
brittle materials, such as graphite, ceramics and concrete, has been
a challenging task for materials scientists and engineers. Because of
the heterogeneity inherent in the microstructure, the material
properties, notably the strength, of brittle materials usually have
very large variations. Therefore, in the design or safety assessment
of brittle components, probabilistic models such as that of
Weibull’s are usually adopted [1–3].

The two-parameter Weibull probabilistic model can be
expressed as:

Pf ¼ 1� exp �
Z

V

r
r0

� �m dV
V

� �
; ð1Þ

where Pf is the failure probability, r is the applied stress, r0 is re-
lated to the mean strength per unit volume of the material, m is a
reciprocal measure of the variation in the material’s strength, and
V is the volume of the component. r0 and m are usually called the
Weibull parameters, and are often taken to be material constants.

The Weibull model is often used to explain the so-called size-
effect [4] on the strength of brittle materials – the bigger the com-
ponent, the lower the strength – because of the higher probability
of the existence of a strength-limiting flaw in larger components.
Similarly, the model can explain the difference between the tensile
and bend strength of brittle materials. According to the theory,
because of the smaller effective stressed volume of a beam in
bending, as compared to that in tension, the bend strength of a
brittle material is on average higher than its tensile strength.
ll rights reserved.

: +1 612 626 1484.
However, there is evidence showing that the Weibull parame-
ters are in fact not material constants, being dependent on the
stress state and geometry of the component. For example, both
the Weibull modulus and mean volumetric fracture strength of
graphite under biaxial flexure have been found to be higher than
those under uniaxial flexure [5,6]. For silicon nitride, Kawamoto
et al. [7] reported higher Weibull modulus for the bend strength
than for the tensile strength. Similar results have been reported
by Price [8] on nuclear graphite. Changes in the Weibull parame-
ters of brittle materials also appear to be more pronounced with
increasing strain gradient. Fig. 1 shows significant increases in
the Weibull modulus of the fracture load of some graphite L-
shaped specimens with increasing stress concentration at the
notch [9].

More importantly, the Weibull model seriously underestimates
the mean failure strength of components with high stress concen-
trations because of the particular form of the Weibull stress func-
tion [10], as given in Eq. (1). A nonlocal approach using spatial
averaging of the stresses has been proposed by Bazant and Novak
[4] to overcome this problem, but this seems to contradict with the
weakest-link theory on which the Weibull model is based. Also, the
problem with the dependence of the Weibull parameters on stress
state and specimen shape still remains, and the predictions given
by the Weibull model are rather sensitive to its parameters [2].

The strain-softening behaviour of quasi-brittle materials has
been shown by many workers to be an alternative, deterministic
explanation for the difference between the tensile and flexural
strength of such materials [11]. Using the finite element method
and a fictitious crack model, Hillerborg et al. [12] considered the
ratio between bending and tensile strength of concrete beams with
different beam depths. Good agreement between theory and
experiments was obtained. Raphael [13] and Bazant and Li [14]
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Fig. 1. (a) Dimensions of L-shaped specimen and (b) Weibull plots from testing L-shaped specimens with different corner radii.
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used nonlinear stress–strain continuum models to investigate the
same problem and obtain similar results. The latter workers con-
cluded that the size-effect on the flexural strength of concrete
was caused by the strain gradient within the beams. A similar con-
clusion on size-effect was drawn by van Vliet and van Mier [15]
who conducted a series of uniaxial tension experiments on con-
crete. They further showed that the strain gradients were caused
by the specimen shape, load eccentricity and material
heterogeneity.

The aim of this paper is to show that, in addition to causing
changes in the mean strength, strain gradients can also cause
changes in the spread, i.e. Weibull modulus, of the failure loads
of brittle components. Using a strain-softening material model,
the failures of bars in uniform tension, beams in pure bending
and specimens with different degrees of stress concentration were
deterministically predicted. A Monte Carlo analysis was then per-
formed by randomly changing the failure strain to investigate the
effect of stress concentration on the spread of the failure loads of
nominally identical specimens. It will be shown that, not only
can the strain-softening material model explain deterministically
the difference between the tensile and flexural strengths of brittle
materials, it can also correctly predict changes in the spread of the
failure loads of brittle components with different strain gradients.
The current results should therefore be useful for improving the
accuracy of failure predictions for brittle materials using a probabi-
listic approach.
2. Material behaviour

Fig. 2 shows a typical stress–strain curve for quasi-brittle mate-
rials [15,16]. The behaviour is initially linear and elastic, but after
reaching a critical strain value, the material will then soften and
Strain
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Fig. 2. A typical stress strain curve of quasi-brittle materials.
ultimately fracture. In this study, following the approach by Bazant
and Li [14], such behaviour is modelled by the simplified bilinear
stress–strain curve in Fig. 3b (model B), where ecr is the critical
strain and eu is the ultimate failure strain. For comparison pur-
poses, an ideally brittle model with no strain-softening prior to
fracture, as shown in Fig. 3a (model A), is also considered. The dif-
ference between these two material models can also be illustrated
by the different forms of the elastic modulus as a function of strain,
as shown in Fig. 4a and b, respectively. For material model B, the
elastic modulus as a function of strain has the form:

E ¼ E0; e 6 ecr ;

E ¼ E0ecrðeu � eÞ=ðeu � ecrÞ=e; ecr < e 6 eu;

E ¼ 0; e > eu:

8><
>: ð2Þ
3. Beam in pure bending

For a beam of depth d and breadth b under pure bending, the
applied bending moment M can be determined by integrating the
first moment of the longitudinal direct stress r along the beam
depth, i.e.

M ¼
Z d

0
b � rðeÞ � ydy;

¼
Z d

0
b � EðeÞ � eðyÞ � ydy;

ð3Þ

where E is the elastic modulus, which is a function of the applied
strain as indicated in Fig. 4 and Eq. (2).

The loading process is divided into three stages according to the
maximum strain, e0, at the top tensile surface of the beam. The
three loading stages are: (1) before material damage (e0 < ecr),
(2) after damage initiation but before crack formation
(ecr < e0 < eu), and (3) crack formation and propagation (e0 > eu).
For simplicity, the distribution of strain e across the beam depth
is assumed to be linear throughout the entire loading process
[7,9], i.e.

e ¼ ec þ ðe0 � ecÞ
y
d
; ð4Þ

where ec is the strain on the compressive face. Further, material
damage and crack propagation are assumed to occur along a single
vertical crack path. The strain and stress distributions along the
crack path for the three loading stages are shown schematically in
Fig. 5a–c, respectively. Note that, since brittle materials are much
stronger in compression than in tension, compressive stresses or
strains are assumed not to cause material damage or failure.
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Fig. 3. Idealised stress–strain curves of (a) material model A without strain-softening and (b) material model B with strain-softening prior to fracture.
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Fig. 4. Young’s modulus against strain curves: (a) material model A and (b) material model B.
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Fig. 5. Strain and stress distributions of brittle beam under pure bending: (a) before
material damage (e0 < ecr), (b) during material damage but prior to cracking
(ecr < e0 < eu), and (c) during crack propagation (e0 > eu).
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When e0 < ecr (Fig. 5a), since all the materials are linearly elastic,
the moment M can be easily derived from Eqs. (3) and (4) as a func-
tion of the maximum tensile strain e0.

When e0 > ecr or e0 > eu (Fig. 5b and c), because of material soft-
ening and/or cracking at the top surface, the position of the neutral
axis yn will shift downward. To obtain the moment M using Eq. (3),
the position of the neutral axis yn, the length of the damage zone
ad, and the compressive strain ec at the bottom surface will need
to be determined first according to the equilibrium condition:

Z d

0
b � r � dy ¼

Z d

0
b � EðeÞ � eðyÞ � dy ¼ 0; ð5Þ

since the beam is in pure bending. Note that the three unknowns yn,
ad and ec are related through similar triangles (see Fig. 5), so Eq. (5)
can be made to contain one unknown only and is thus solvable to
give a unique solution.

The strain at the cracked portion of the cross-section is of course
indeterminate. It is used here to represent the average or effective
strain over the length of the beam at that position.

The technical computing language software Matlab [17] was
used to first solve numerically Eq. (5) and then calculate the ap-
plied moment using Eq. (3). Figs. 6 and 7 show the predicted equiv-
alent stress (6M/bd2) based on simple beam theory against the
maximum surface strain for the beam in pure bending using the
two material models illustrated in Figs. 3 and 4. The stress for a
bar under uniform tension using the same material models are also
given for comparison. The dimensions and material parameters
used were: b = 10 mm, d = 20 mm, E = 10 GPa, ecr ¼ 0:002 and
eu ¼ 1:5ecr .

It can be clearly seen from Figs. 6 and 7 that, with material
model A, the predicted tensile strength and flexural strength are
the same. However, with material model B, which softens gradu-
ally prior to fracture, the predicted flexural strength is higher than
the tensile strength.

The difference between the tensile and flexural strengths de-
pends on the difference between ecr and eu. By increasing the ulti-
mate failure strain, eu, Fig. 8 shows that, for the bar in tension, only
the failure strain has been increased; the failure stress remains the
same. For the beam in bending, however, both the nominal failure
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stress and failure strain have been increased by an increase in the
ultimate failure strain of the material. For the particular material
model considered, a 30% increase in eu results in approximately
Fig. 6. Equivalent stress against maximum surface strain using material model A.

Fig. 7. Equivalent stress against maximum surface strain using material model B.

Fig. 8. Equivalent stress against maximum surface strain with 30% increase in eu.

Fig. 9. Ratio of flexural to tensile strength against ratio of eu to ecr.
10% increase in the flexural strength. Fig. 9 shows the ratio of flex-
ural strength to tensile strength against the ratio of ultimate strain
to critical strain, eu=ecr , based on a critical strain ecr ¼ 0:002.
4. Components with a high stress concentration

For components with a high stress concentration, such as the L-
shaped specimen in tension shown in Fig. 1a, the strain distribu-
tion along the crack path is approximated by a power function of
the form (Fig. 10):

e ¼ e0
y
d

� �n
; ð6Þ

where e0 is the maximum strain at the inner corner point, d is the
length of the crack path, y is the distance along the crack path,
and n is a parameter governing the shape of the strain distribution
or degree of strain concentration. It is assumed that the smaller the
corner radius of the specimen, the larger the value of n, and higher
the strain concentration.

The applied tensile load P can be expressed as:

P ¼
Z d

0
b � rðeÞ � dy ¼

Z d

0
b � EðeÞ � e � dy; ð7Þ

where b is the thickness of the specimen.
The whole loading and fracture process is again divided into

three stages according to the maximum strain e0: (1) before mate-
rial damage (e0 < ecr), (2) after damage initiation but before crack
formation (ecr < e0 < eu), and (3) crack formation and propagation
(e0 > eu). The strain and stress distributions along the crack path of
the specimen for the three loading stages are shown schematically
y 
d

0ε

Fig. 10. Schematic strain distribution along the crack path of the L-shaped
specimen under tension.



Fig. 11. Strain and stress distributions of L-shaped specimen under tension: (a)
before material damage (e0 < ecr), (b) during material damage but prior to cracking
(ecr < e0 < eu), and (c) during crack propagation (e0 > eu).

Fig. 12. (a) Predicted load–displacement curves for L-shaped specimens with
different values of n for the strain distribution, Eq. (6). (b) Experimental load–
displacement curve of L-shaped specimen with a corner radius of 2 mm [18].
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in Fig. 11a–c, respectively. e0 is taken to be the independent vari-
able, and the tensile load P is determined at each stage of loading
as a function of e0.

4.1. Applied load for stage 1 – before material damage (e0 < ecr)

During this stage of loading, the material is linearly elastic, and
its Young’s modulus has a constant value of E0. The applied load, P1,
can be obtained by substituting Eq. (6) into (7) and integrating.
Thus,

P1 ¼
Z d

0
b � E0 � e0

y
d

� �n
� dy;

¼ b � d � E0e0

nþ 1
: ð8Þ
4.2. Applied load for stage 2 – after damage initiation but prior to
cracking (ecr < e0 < eu)

During this stage of loading, there is material softening which
initiates at the inner corner of the specimen. The stress distribution
along the crack path can be separated into two parts: the elastic
portion up to the critical stress rcr = E0ecr and the strain-softening
portion where e > ecr; see Fig. 11b. The depth of material without
damage, ycr, is a function of ecr and e0:

ycr ¼ d � ecr

e0

� �1
n

; ð9Þ

and the applied load for this stage of loading, P2, can be expressed:

P2 ¼
Z ycr

0
b � E0 � e0

y
d

� �n
� dyþ

Z d

ycr

b � EðeÞ � e0
y
d

� �n
� dy: ð10Þ
4.3. Applied load for stage 3 – crack formation and propagation
(e0 > eu)

When the maximum strain is greater than the ultimate failure
strain, eu, a crack is assumed to appear at the inner corner. The
resulting distributions of strain and stress are shown in Fig. 11c,
in which a is the crack length, ycr and yu are the remaining depths
of material with strains lower than ecr and eu, respectively. ycr can
again be obtained using Eq. (9), while yu and a are:
yu ¼ d � eu

e0

� �1
n

; ð11Þ

and

a ¼ d� yu; ð12Þ

respectively. Thus, the load, P3, after crack formation is given as:

P3 ¼
Z ycr

0
b � E0 � e0

y
d

� �n
� dyþ

Z yu

ycr

b � EðeÞ � e0
y
d

� �n
� dy: ð13Þ

Material model B (Figs. 3b and 4b) was considered for this case.
The parameters assumed were: b = 15 mm, d = 21 mm, E0 = 10 GPa,
ecr ¼ 0:002 and eu ¼ 1:5ecr . These are based on the properties of
medium grained semi-isotropic extruded graphite tested in Refs.
[9,18].

Fig. 12a gives the predicted load against displacement curves
for different n values. The displacement in Fig. 12a is estimated
approximately from the load P according to simple beam theory,
with the uncracked section being used as the effective beam depth.
It can be seen that with an increase of n, i.e. a steeper strain gradi-
ent or a smaller corner radius, the failure load decreases. The fail-
ure process is also more gradual, with possibly stable crack
propagation, for cases with very high stress/strain gradients. These
observations are in accord with the experimental results presented
in Ref. [18] (see Fig. 12b), and are similar to those seen in the com-
pact tensile test [19].

5. Statistical analysis

With the above analytical model, statistical analysis can be eas-
ily conducted with an assumed statistical distribution of the criti-
cal strain ecr. Fig. 13 shows such a distribution based on the



Fig. 15. PDF of equivalent failure stress using material model B, assuming constant eu.
Fig. 13. Weibull distribution of critical strain (a = 0.2%, m = 7).
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Weibull function with a normalizing strain of 0.2% and a Weibull
modulus of 7. The number of samples used was 3000, which were
randomly created by Matlab.

5.1. Beams in pure bending

Figs. 14 and 15 give the probability distribution function (PDF)
of the equivalent failure stress of bars under tension and beams in
bending, using material models A and B (Fig. 3), respectively. For
illustration, the critical strain was assumed to follow the Weibull
distribution as shown in Fig. 13, while the ultimate strain eu was
assumed to be a constant, i.e. 1.5 times the mean critical strain.
When the ideally brittle material model A is used, the statistical
distributions of the failure stress are the same for both bending
and tension, and follow the shape of the critical strain distribution.
However, when gradual material softening is considered, i.e. using
material model B, the statistical distribution of the failure stress of
beams under bending becomes different from that of the bars in
tension. The bars in tension have a lower mean value but a wider
spread in their strengths. The beams under bending, on the other
Fig. 14. PDF of equivalent failure stress using material model A.
hand, have a higher mean value but a narrower spread in their
strengths.

Fig. 16 gives the Weibull failure probability plots for the bars in
tension and beams in bending using material model B. The results
again demonstrate the statistical difference between the two stress
states. Not only are the two curves separated by the difference in
their mean strengths, their slopes are also different, indicating a
dependence of the spread on the stress state. The Weibull moduli
m for tension and bending are 6.9 and 9.4, respectively. Note that
the same trend has been reported for graphite and silicon nitride
[7–9].
5.2. Components with a high stress concentration

Figs. 17 and 18 show the PDF and Weibull plots of the failure
loads of specimens with their concentrated strain distributions
represented by Eq. (6). It can be seen that with the increase of n,
the mean failure load reduces while the Weibull modulus m in-
creases. These are, again, consistent with the experimental results
presented in [10,18] for graphite; see Fig. 1b.
Fig. 16. Weibull failure plots of bar in tension and beam in bending using material
model B, assuming constant eu.



Fig. 17. PDF of failure load of L-shaped specimens with different strain gradients.

Fig. 18. Weibull failure plots of L-shaped specimens with different strain gradients,
assuming constant eu.

Fig. 19. Weibull failure plots of bar in tension and beam in bending, assuming
eu = 1.5ecr.

Fig. 20. Weibull failure plots of L-shaped specimen with different strain gradients,
assuming eu = 1.5ecr.
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5.3. Sensitivity to eu

The above results are all based on the assumption that the ulti-
mate strain eu is a constant (1.5 times the mean critical strain) and
only the critical strain ecr has a statistical distribution. For the case
where eu changes with ecr according to the ratio eu = 1.5ecr, the pre-
dicted results for the bars and beams and for the specimens with a
high stress concentration are shown in Figs. 19 and 20, respec-
tively. It can be seen that the Weibull modulus m is now almost
insensitive to the strain gradient. The corresponding changes in
the mean failure load are also smaller.
6. Discussion

Using a simple constitutive model, the dependence on the strain
gradient of the magnitude and spread of the failure loads of quasi-
brittle components has been considered. The numerical predic-
tions are qualitatively in good agreement with the experimental
results reported by other investigators.

The assumption of linear strain distribution within the beam in
bending for all stages of loading is perhaps too simplistic, espe-
cially after crack formation. This can be improved by using more
realistic strain distributions which can be obtained with the help
of full-field strain measurement techniques such as electronic
speckle pattern interferometry (ESPI) or numerical stress analysis.
As for the material model, the bilinear stress–strain curves used
may also be too simplistic and further refinement may be required.
However, the assumption of linear strain distribution for the un-
cracked section has recently been used by Wu et al. [20] to predict
the effective fracture toughness of concrete notched beams under
3-point bending, and good agreement between predictions and
experiments has been obtained. The main difference between the
current work and that of Wu et al. [20] is that the current work
uses an approximate continuum approach with nonlinear stress–
strain behaviour to model the damage process zone, while Wu
et al. [20] use the fictitious crack model. In any case, the linear
strain distribution assumption is probably valid up to the point
of peak load prior to crack formation, and the post-peak behaviour
will not affect the subsequent statistical analysis on the spread of
the peak loads.

Despite the simplifications, the analytical method presented in
this paper is still capable of producing very representative results.
Notably, it predicts deterministically a flexural strength higher
than the tensile strength – as seen in experiments on all kinds of
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brittle materials – when the material model with strain-softening
is used. When the ideally brittle material model is used, however,
there is no difference between the flexural and tensile strengths.
The apparent increase in the failure stress of brittle beams under
bending is therefore due to the ability of the material to sustain
further increase in load even after damage initiation up to the point
of critical load. This is similar to the effect of plasticity in metallic
materials which can continue to provide significant resistance to
loading even after yielding.

The simple analytical model also successfully reproduces the
shape of the load–displacement curve of the graphite L-shape spec-
imen and the reduction of its failure (peak) load with decreasing
corner radius. However, the predicted applied load beyond the
peak value only approaches zero asymptotically, leading to overes-
timates of the load for very large prescribed displacements, espe-
cially for specimens with low stress concentrations or n values.
Note that, just as in the beam under bending, the strain distribu-
tion is expected to change significantly after crack formation. Spe-
cifically, the strain concentration will become more pronounced
(increased n value), and all the L-shape specimens are expected
to have similar post-failure load–displacement characteristics be-
cause of the now similar strain concentrations, irrespective of their
initial notch radius. It is expected that using more realistic strain
distributions and more representative strain-softening material
models will improve the load predictions. However, as stated
above, the post-peak behaviour should not influence the statistical
analysis on the spread of the peak loads.

It is worth pointing out that the predicted failure loads pre-
sented in this work agree qualitatively with those given by previ-
ous finite element analyses for nuclear graphite using the more
sophisticated continuum damage mechanics (CDM) model
[21,22]. For example, it was found that, with the CDM model, an
‘elastic-perfectly plastic’ behaviour was essential in providing a
flexural strength higher than the tensile strength [22]. This agree-
ment is perhaps not surprising since the approach taken here is
similar to the CDM model. The current work, however, provides a
more fundamental understanding to the previous numerical pre-
dictions and the actual failure process that takes place in quasi-
brittle materials.

The simple analytical model allows statistical and sensitivity
analysis to be performed readily to account for the inherent varia-
tions in the properties of brittle materials. It correctly predicts the
change in the spread of the failure loads of specimens with differ-
ent strain gradients; specifically, the increase in the Weibull mod-
ulus with increased stress concentration. At the same time, by
changing the relationship between the critical and ultimate strains
of the material, there is sufficient flexibility in the model to capture
different statistical behaviours. For quasi-brittle materials such as
graphite and ceramics, it seems that the constant ultimate strain
assumption is more appropriate as it correctly predicts a higher
Weibull modulus in bending than in tension. More sophisticated
analysis can be carried out using finite element models with ran-
domly distributed material properties [23]. However, the computa-
tional effort required is far more extensive.

An intuitive explanation is offered here for the change in Wei-
bull modulus with strain gradient. For brittle components with a
low stress concentration, e.g. the bar in tension, failure of the com-
ponents is caused by the unstable propagation of the most critical
flaw. The weakest-link theory would therefore be appropriate for
these components. On the other hand, for brittle components with
a high stress concentration, gross failure is often preceded by the
stable propagation and coalescence of several or even many sub-
critical flaws. Using the throwing of dice as an analogy, when there
is only one die, the numbers 1–6 will have a uniform probability
distribution. When there are more than one dice, however, the
probability distribution for the sum of the numbers from the dice
will have a peak in the middle. For example, with two dice, the pos-
sible outcomes are 2, 3, 4, . . ., 12, but the probability distribution
will peak at the number 7. Similarly, it is reasonable to expect brit-
tle components with a higher stress concentration to have a nar-
rower spread in their failure loads because of their dependence
on the combined failure of more than one flaws.

7. Conclusions

� A simple deterministic failure model based on nonlinear stress–
strain curves has been employed for predicting the failure of
quasi-brittle materials. The model correctly predicts the failure
behaviour of specimens with different strain gradients, includ-
ing those with high stress concentrations.

� A flexural strength higher than the tensile strength is predicted
when a material model with gradual strain-softening is consid-
ered. The effect is similar to that of plasticity in metals in provid-
ing load resistance even after material damage has initiated.

� The numerical results agree qualitatively with those predicted
using the more sophisticated FE-based continuum damage
mechanics (CDM) model.

� The model, though deterministic in nature, can incorporate sta-
tistical effects readily. The increase in the Weibull modulus of
the failure loads with increasing strain gradients has been cor-
rectly predicted.
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